

1. DOC-S 新機能紹介

DOC-S Ver.2.0 新機能紹介 目次

1.S造耐震診断が難しい理由

- 2.プログラム構成
- 3.新機能一覧

4.新機能説明

DOC-S Ver.2.0 新機能紹介 S造診断が難しい理由

5

1.建物形状が多種多様 例:山形フレーム、トラス架構、ダイヤモンドトラスetc

2.断面形状が多種多様 例:H形鋼・鋼管などの充腹材以外に組立材がある

DOC-S Ver.2.0 新機能紹介 S造診断が難しい理由

3.検討する部材が多い RC造診断に比べて接合部の検討が必要。 また溶接欠陥などの施工状態の考慮が必要。

4.非剛床建物が多い 必要に応じて剛床解除が必要。

DOC-S Ver.2.0 新機能紹介 S造診断が難しい理由

5

2011年版 S造診断指針 例図3.22 P176

DOC-S Ver.2.0 新機能紹介 プログラム構成

<u>F</u>

1.単独起動が可能 一貫構造計算ソフト・データ転送などが不要。 2.屋内体育館や工場、ビル建物が適用範囲 岡床解除が必要。 下階がRC建物も対象。 3.S造の充腹材や組立材が入力可能 4.接合部、基礎転倒モーメント耐力計算が可能 5.荷重拾いから保有計算までを行う RC部材を含めた保有計算(増分解析・節点振分法)を行う。 6.診断計算だけでなく、補強計算も行う 平面解析モデルの場合、ゾーニング用としてフレーム ごとのIs値計算も行う。

DOC-S Ver.2.0 新機能紹介 新機能一覧その1

分類	内容	詳細
使用基準	2011年版S造診断指針	溶接欠陥、柱脚耐力、靭性指標
建物形状	鉛直ブレースの任意配置	はりや柱をまたいだブレース
	方杖ブレースの追加	補強用として増設ブレースに追加
断面形状	S造組立材の強化	弦材にH形鋼・円形鋼管、柱にH 形鋼十字断面を追加。また非対 称断面にも対応
準備計算	固有周期の参考値出力	ストドラ法による固有周期の計算
応力計算	部材中間節点	K形ブレースや露出・根巻き柱脚 を正確にモデル化
	パネルゾーンの剛性の考慮	パネルのせん断変形に対応
	はり水平方向剛性の考慮	
	ねじり剛性の考慮	
	多層ブレースに対応	立体解析だけでなく、擬似立体解 析でも対応

DOC-S Ver.2.0 新機能紹介 新機能一覧その2

分類	内容	詳細
保有計算 準備計算	部材中間節点	K形ブレースのはりの中央部曲 げヒンジ、露出柱脚の崩壊を考慮
	溶接欠陥の考慮	突合せ、隅肉溶接の溶接欠陥を 考慮した接合部耐力を計算
	組立材の接合部耐力	充腹材だけでなく、組立材の接合 部耐力計算を行う。
	はり横座屈曲げモーメント耐 カ	保有耐力横補剛の満足する場合 は検討省略
	はりの軸耐力の考慮	ブレース架構の桁ばり検討用
	露出柱脚の耐力式の選択	技術基準式だけでなく、S造診断 式も追加
	パネルゾーンの耐力の考慮	パネルの曲げ降伏を同時に検討
	ノンダイアフラムの考慮	東京都診断システムマニュアル 準拠
	完全塑性理論	DB6.6.0.16にて公開

DOC-S Ver.2.0 新機能紹介 新機能一覧その3

5

分類	内容	詳細
保有計算 立体解析	立体MNモデルの追加	DB6.6.0.10にて公開
	はりの水平方向耐力の考慮	
保有計算 擬似立体解析 平面フレーム解析	多層ブレースに対応	
	剛域と危険断面位置	剛域と危険断面位置を別に扱う。
保有計算 節点振り分け法	計算対象架構の追加	ブレースの柱、支点抜け
	仮想仕事法の強化	壁とブレースが接続している場合 も適用範囲へ

※各解析モデル間の計算機能の共通化と結果の相違を軽減

DOC-S Ver.2.0 新機能紹介 新機能一覧その4

分類	内容	詳細
診断計算 屋根面の検討	屋根面の検討	DB6.6.0.4にて公開
診断計算 靭性指標	溶接欠陥の考慮	2011年版S造診断指針、沿道建 築物耐震診断マニュアルに対応
	計算対象部材	水平力抵抗部材を計算対象とし、 間柱や小ばり扱いの部材は対象 外に変更
	RC、SRC部材のF値	2001年版RC診断指針、2009年 版SRC診断指針で計算
	節点、階の靭性指標の方向 別指定	X方向、Y方向で建物性状が大きく 異なる場合を考慮
出力	最新のBUS-5と同等の出力	出力内容の集約化と出力枚数の 削減
マニュアル	図やフローを追加、参照する 指針を記述	プログラムの内容や判断の根拠 を記述

DOC-S Ver.2.0 新機能紹介 使用基準

2011年版S造診断指針 P191

1.溶接欠陥を考慮

- fPu1=bb(btf-hd)Fu
- $_{f}P_{u2}=1.4\Sigma\alpha \cdot _{b}b \cdot Fu/\sqrt{3}$

※指針が96年版S造診断指針、 屋体基準でも適用します。

はり接合部名称	
(はり端部)はり継手部)	
名称 フランジ 接合形式 フランジ 次陥指示高さ	フランジ溶接欠陥指示長
G1E 突合世溶接 0.0	0.0
< III	
「 「 データのロック(L)	
名称 G1E	
- フランジー	-1
「「「「「「「」」 「欠陥指示高さ-(mm) ―――」	
□ 板厚相当 0	
溶接欠陥指示長さ-(mm)	
隅肉サイズ Sf 5 (mm)	
隅肉強度の αf 1.4 割増係数	
- 治療有効長さ(mm)	

【操作】

メニュー:基本データ入力->接合部->はり接合部符号

DOC-S Ver.2.0 新機能紹介 使用基準

2011年版S造診断指針 P12~P13

2-1.露出柱脚

アンカーボルトの引張耐力Tyが変更(破断耐力を考慮)

■柱脚 露出柱脚	=====	==	======
番号 形状	(mm)		番号[2] BxD 500x500 AB 4-φ36伸びあり
材料ーボルト F	(N/mm2)		SS400 Fy 258 Fu 400
材料ーコンクリート	(N/mm2)		Fc 30
断面性能 A	(cm2)		bA 10.18 bAe 10.18
その他	(mm)		dt 200 nt 2(本) nc 2(本)
耐力諸元 Ny	(kN)		6375 = 0.85xBxDxFc =0.85x500x500x30(N)
Ту	(kN)		<u>525.2 = ntxmin(bAxEy.bAexEu)</u> =2xmin(10.18x100x258、10.18x100x400)(N)
Sy	(kN)		303.2 = Ty/√3 =525.2/√3(N)
◆加力方向X+	(kN)		N 32.4 M 1.59(kNm)
	(kNm)		232.3 =Tyxdt+(N+Ty)xD/2x{1-(N+Ty)/Ny} ※Ny-Ty≧N>-Ty
			=525.2x0.2+(32.4+525.2)x0.5/2x{1-(32.4+525.2)/6375}
口耐力内訳Qfu	(kN)		$\frac{278.8 = 0.5 \times (N+Ty) = 0.5 \times (32.4+525.2)}{278.8 = 0.5 \times (N+Ty) = 0.5 \times (32.4+525.2)}$
Qsu	(kN)		303.2 = Sy = 303.2
せん断耐力Qu	(kN)		303.2 = max{Qfu, Qsu} = max{278.8, 303.2}

【操作】

5

メニュー:計算->S造耐震診断(個別)->S柱部材耐力の選択計算

DOC-S Ver.2.0 新機能紹介 使用基準

2011年版S造診断指針 P14~P15 2-2.根巻き柱脚

かぶり厚t、H形鋼柱のbeの扱いが変更

■柱脚 根巻柱脚	=====	==	=======
符号 形状 高さ	(mm)		符号[F1] bxD 450x650 L 1300
配筋	(mm)		主筋5-D16 帯筋D10-2D @200
材料−鉄筋	(N/mm2)		主筋SD295 roy 324 帯筋SD295 wft 324 - 赤市・王士白老市
材料ーコンクリート	(N/mm2)		Fc 18 cfs 0.9
断面諸元	(mm)		rat 9.95(cm2) pw 0.004(小数) rd 590.2 be 100 <mark>t</mark> 100=min(tx 155、ty 100)
◆柱脚接合判定	(mm)		係数 0.7 ※判定を満たしていないため
◇判定内訳 高さ	(mm)		OK L≧ 3xH (1300≧ 3x340)
かぶり	(mm)		 不足 t < 150(100 < 150)
带筋	(mm)		不足 D10@200 ※D10以上@100以下
曲げ耐力 M⊍	(kNm)		119.9 = 係数x0.9xratx100xrσyxrd = 0.7x0.9x9.95x100x324x590.2(Nmm)
せん新耐力の正	(kN)		343.4 = 7/8xbxrdxmin{cfs+wftxpw/2、2:be'bxcfs+wftxpw}
			= 7/8x450x590.2xmin{0.9+324x0.004/2, 2x100/450x0.9+324x0.004}(N)

【参照】

5

1996年版S造診断指針 P11、2011年版S造診断指針 図10 P15

【操作】

メニュー:計算->S造耐震診断(個別)->S柱部材耐力の選択計算

DOC-S Ver.2.0 新機能紹介 使用基準

2011年版S造診断指針 P19

3. 靭性指標(継手)

非保有耐力接合でも母材要因で決まる場合を考慮

S診断指針(S診断指針 P19)、	、屋体基準の場合(屋体改修手引き P106)
-------------------	------------------------

	保有耐力接合	非保有耐力接合	
按 合部形式	$jMu \ge \alpha \cdot mMp$	$\alpha \cdot mMp > jMu \ge Mp$	Mp>jMu
ボルト接合	母材の靭性指標	1.8[1.3]	1.2[1.3]
溶接接合	母材の靭性指標	突合せ 3.0 ^{※1} [1.3] 隅肉 1.0 ^{※1} [1.3]	1.0[1.3]

※1 S診断指針(P85)解説および表 6.1.7 はり端部の靱性指標より設定します。

96年版S診断指針の場合

はり形状	保有耐力接合	非保有耐力接合
	母材の靭性指標	1.0[1.3]

DOC-S Ver.2.0 概要編マニュアルより

DOC-S Ver.2.0 新機能紹介 建物形状

鉛直ブレースの任意配置 はりや柱をまたぐブレース

【操作】 メニュー:基本データ入力->ブレース->ブレースの任意配置

DOC-S Ver.2.0 新機能紹介 建物形状

方杖ブレースの追加 補強用として増設ブレースのタイプに追加しました。

【操作】 メニュー:耐震診断->増設部材->増設壁、ブレース

DOC-S Ver.2.0 新機能紹介 断面形状

組立材の強化 1.弦材にH形鋼・円形鋼管。 2.非対称断面に対応。 はりでは上下弦材、柱ではXY方向 3.組立柱にH形鋼十字形を追加。

【操作】

メニュー:基本データ入力->はり->Sはり符号の入力 メニュー:基本データ入力->柱->S柱符号の入力

DOC-S Ver.2.0 新機能紹介 準備計算

固有周期の参考値出力

ストドラ法による固有周期の計算で、桁ブレース方向と梁 間方向の建物剛性の違いを考慮

■ 出力条件		
出力条件1 出力条件2 出力条件3 一般	-許容計算	
 □ 日付を出力する □ 時間を出力する □ 部材記号に層番号を出力する □ 寄り寸法を伏図・軸組図に考慮する 	 □ 固有周期の精算値を参考値出力する 応力計算結果の出力 正負加力 正負加力 	
		」出力
 詳細 ウダイジェスト 	土質柱状図の出力内容の18~~ 初期値を書き換える	 イエ・フ・エッピュルシップ く × 方向(正負加力) > Z = 1.000 用途係数 = 1.000 a) 1 次固有周期(T)の算出 T(直接入力値) :0.307(秒)
	OK キャンセル 適用(A)	ストドラ法による固有周期T (参考値) :0.629 (秒)

※層せん断力分布が大きく変わるので、取り扱いには十分に注意が必要です。

【操作】

メニュー:出力->出力条件

DOC-S Ver.2.0 新機能紹介 応力計算

部材中間節点

5

K形ブレースや露出・根巻き柱脚を正確にモデル化

メニュー:構造計算共通条件->モデル化->モデル化条件

DOC-S Ver.2.0 新機能紹介 応力計算

パネルゾーンの剛性の考慮

モデル化条件		
壁置換 剛性・剛域 加力方向 仕口部		
- 仕口部のモデル化		
 ○ 剛域を設けない ○ 剛域を設ける -S造 		
○ 剛域を設けない ○ 剛域を設ける ○ せん断変形を考慮		1
	出力	
省略時の値	画面上の応力図	•
OK キャンセル	<柱はり接合部> PN.M : せん断曲げモーメント(kNm)	
※柱がH形鋼の場合、柱通し形式で 角形鋼管・円形鋼管の場合はダイアフラム	C. Mt (C. Qt)	4.7 5.6 (5.5) (1.1)
形式で剛性を計算(デフォルト)	C, Mo C. N	4.6 1.00

【操作】

5

メニュー:構造計算共通条件->モデル化->モデル化条件

DOC-S Ver.2.0 新機能紹介 応力計算

Ľ

はりの水平方向剛性の考慮

【操作】

5

メニュー:構造計算共通条件->モデル化->はり水平方向剛性

DOC-S Ver.2.0 新機能紹介 保有計算 準備計算

はり横座屈曲げモーメント耐力

震診断計算条件		— ×	
1、2次診断 3次診断 S遺診断 共通	(モデル化・終局強度) 共通(F値・ゲル	レーピング・Eo等)	1
S這診断指針 〇 96年版耐震診断指針 ④ 2011年	版耐震診断指針 C 文科省屋体系	基準	
部材耐力 横座屈曲げ降伏耐力の考慮 ※充腹材のはり部材のみ 考 露出注題 曲げ・せん断耐力式 非保有耐力接合ブレースの 圧縮耐力の取り扱い ・ 考	有耐力横補剛を 足する場合、 ○ 考慮しない <u>慮しない</u> 诊断指針 ○ 技術基準 _{商しない}	 ● 考慮する 	_
		(省略時の値)	T
ユーザーデータベース >>	ОК	キャンセル	
※ 2011年版S造診	診断指針の質問	·回答集	より

Sはり部材耐力の選択計算結果(抜粋)

	(kNm)	L	Me 3180.9 Cb 2.0 M2/M1 0.22 M1 -24.63 M2 5.42 lb 1933(mm)
	(kNm)	CR	Me 2065.2 Cb 1.3 M2/M1 -0.504 M1 -155.7 M2 -78.47 lb 1934(mm)
横座屈 Mc X+	(kNm)	L	Mc 291.0 Mp 291.0 ※λb(0.302)≦pλb(0.666)
	(kNm)	CR	Mc 291.0 Mp 291.0 ※λb(0.375)≦pλb(0.449)
		_	保有耐力横補剛を満足するため、参考値

【操作】

※考慮しない場合でも参考値として出力します

メニュー: 耐震診断->計算条件->耐震診断計算条件

DOC-S Ver.2.0 新機能紹介 保有計算 準備計算

はり軸耐力の考慮

【操作】

5

メニュー:許容応力度等->保有計算一保有水平耐力計算条件->部材耐力算定式

DOC-S Ver.2.0 新機能紹介 保有計算 準備計算

露出柱脚の耐力式の選択

DOC-S Ver.2.0 新機能紹介 保有計算 準備計算

_

パネルゾーンの耐力の考慮

解析条件等	
解析モデル・モデル化 危険断面位置・部材耐力 部材種別・Ds 危険断面位置の取り方 -RC/SRC造	
せん断終局耐力式のM/Q・d のとり方 告示(Mの最大値/Qの最大値▼ - 仕口部の考慮 S遺 ○ 考慮する C 考慮しない	出力
当略時の値 ユーザーデータベース>> OK キャンセル	画面上の応力図 <柱はり接合部> PN.M : せん断曲げモーメント(kNm) PN.M : せん町曲げモーメント(kNm) 82.0 01.4
※パネルがモデルされない場合、パネ ル耐力による曲げ低減による処理を行 う。	C.Mt (G.QI) 90.5 (0.3)

【操作】

5

メニュー:許容応力度等->保有計算一保有水平耐力計算条件->解析条件等

DOC-S Ver.2.0 新機能紹介 保有計算 準備計算

ダイアフラム・ノンダイアフラム

町田番ち	通しタイプ	板厚 日(>) B(x)	t1(x)	12(X)	追加(R)
						挿入(I)
						変更(R)
						削除(D)
<					•	
	1 (はり通し		- X方向断 ・ 自動	面寸法 ○ 入力	- \/方向助 ● 自動	価寸法 — □ ○ 入力
	はり通し 柱通し メイアラン ノンダイアラン	形式	-断面寸法(n ダイアフラム <u>板</u> 厚	nm) — — — — — — — — — — — — — — — — — — —	Y方向 0	

※ダイアフラムがない。もしくは不十 分の場合に決められた低減係数を はりの全塑性曲げモーメントMpに乗 じることで考慮する。

注意:この検討は、はりの保有耐力 接合には考慮しません。

ダイアフラム形式 柱通し 2005年S規準 P112 Ast = stB· stt And =[C1·bAf-ctw(btf+5to)]C2 Ast ≧ And 隅肉溶接 はりフランジ接合形式 エンド 突合せ溶接 東京都記3新システムマニュアルP54 東京都診断システムマニュアルP54 γ = 1.7 Be/bB (≦1.0, 7.5/btf) $y = 1.7 \cdot Be/bB ~(\leq 1.0)$ jMuSttの計算 min(γ•gMp、jMuStt)→ jMu3 γ•gMp → jMu3 エンド エンド H形鋼強軸計算フロー

スタート

ダイアフラム厚

<はりフランジ厚

≧はりフランジ厚

【操作】

5

メニュー:基本データ入力->接合部->柱はり接合部断面番号

DOC-S Ver.2.0 新機能紹介 保有計算 準備計算

完全塑性理論

メニュー:許容応力度等->保有計算一保有水平耐力計算条件->部材耐力算定式

DOC-S Ver.2.0 新機能紹介 保有計算 節点振り分け法

計算対象架構の追加 ブレースの柱、支点抜け架構の対応

5

 $R A = b / L \times P$ $R B = a / L \times P$ $M C = ab / L \times P$

単純ばりに集中荷重を加えた付加曲げモーメント

片側が柱抜けブレースの応力合成(K形ブレースの場合)

DOC-S Ver.2.0 新機能紹介 診断計算 - 屋根面の検討

DOC-S Ver.2.0 新機能紹介 診断計算 一 靭性指標

溶接欠陥の考慮(耐震診断マニュアルの扱い)

図 5-1 欠陥がある突合せ溶接部の強度と靱性(F)の評価

沿道建築物 耐震診断マニュアルより プログラムの対応:耐力は2011年版で評価。靭性指標は耐震診断マニュアルで評価。 【操作】

メニュー:耐震診断->計算条件->耐震診断計算条件

DOC-S Ver.2.0 新機能紹介 診断計算 一 靭性指標

計算対象部材

水平力抵抗部材(黒色部材)を計算対象に変更しました。

具体例1.間柱・小ばり扱いの部材

DOC-S Ver.2.0 新機能紹介 診断計算 一 靭性指標

RC・SRC部材F値の考慮

RC部材は2001年版RC診断基準、SRC部材は2009年版SRC診断基準で計算。

耐震診断計算条件 · · · · · · · · · · · · · · · · · · ·
1、2次診断 3次診断 S造診断 共通(モデル化・終局強度) 共通(F値・ゲルービンゲ・Eo等) S造診断指針 C 96年版耐震診断指針 ・ 2011年版耐震診断指針 C 文科省屋体基準
- 部材耐力
日日111-00+07127日1月6日1月万法 RCはり部材の考慮 選択指針に準拠 ・
RC·SRC柱、壁部材の考慮 ・ 考慮しない C 考慮する
┌節点の靭性指標計算方法────────────────────────────────────
X方向 最小値 ▼ Y方向 最小値 ▼
- 階の靭性指標集計方法
│ X方向 ⓒ 自動 ○ 最小値 ○ 重み付き平均値 ○ 自乗和平方根 判定用最小F値
Y方向 © 自動 ○ 最小値 ○ 重み付き平均値 ○ 自乗和平方根 1.5
省略時の値
ユーザーデータベース >>> OK キャンセル

注意:単体としてのF値計算が対象で、架構のF値・グルーピング・Is値計算等は別プログラム(DOC-RC/SRC、DOC-3次診断)で計算します。

【操作】

メニュー: 耐震診断->計算条件->耐震診断計算条件

DOC-S Ver.2.0 新機能紹介 診断計算 一 靭性指標

5

建物性状に合わせて方向別に計算方法の指定を可能になりました。

震診断計算条件
1、2次診断 3次診断 S造診断 共通(モデル化・終局強度) 共通(F値・ゲルーピンゲ・Eo等)
S造診断指針 ○ 96年版耐震診断指針 ● 2011年版耐震診断指針 ○ 文科省屋体基準
- 部材耐力
————————————————————————————————————
RCはり部材の考慮 選択指針に準拠 マ
RC·SRC柱、壁部材の考慮 ・ 考慮しない ・ 考慮する
- 節点の靭性指標計算方法
X方向 最小値 💌 Y方向 最小値 💌
- 階の靭性指標集計方法
X方向 ○ 自動 ○ 最小値 ○ 重み付き平均値 ○ 自乗和平方根 判定用最小F値 X方向 ○ 自動 ○ 最小値 ○ 重み付き平均値 ○ 自乗和平方根 15
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
ユーザーデータベース >> OK キャンセル

【操作】 メニュー:耐震診断->計算条件->耐震診断計算条件

DOC-S Ver.2.0 新機能紹介 診断計算 一 靭性指標

RC・SRC部材を含む階の靭性指標

対象となる建物・フレームでRC・SRCはりの有無で計算方法を判断します。

1層とみなし、全階対象に自動計算

2層とみなし、2階対象に自動計算 1階は別プログラム(DOC-RC、DOC-3次診断)を推奨